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Abstract

We describe a flexible algorithm that can create many different kinds of aesthetic fractal patterns. The

main idea of the algorithm is to randomly place progressively smaller copies of a motif within a region,

thus producing a fractal pattern. This has been found to work for a wide variety of shapes for both the

motif and the enclosing region. We show a several examples. If the region is a fundamental region for

one of the 17 “wallpaper” groups, the pattern can be extended by applying transformations from that

group, giving patterns that are locally random, but have global symmetries. We also show examples of

this kind of pattern.

1 Introduction

In a previous paper we described an algorithm that could fill a planar region with a theoretically infinite

number of randomly placed, progressively smaller copies of a basic subpattern or motif [1]. This method

produces a fractal pattern since the placements are random. This algorithm has proved to be quite robust

and works for a wide variety of shapes for the motif and for the region. Figure 1 shows a pattern of red and

blue yin-yang motifs which themselves form a global yin-yang pattern.

Figure 1: A fractal pattern of yin-yangs forming a yin-yang.

Subsequently we used the algorithm to fill fundamental regions of some of the 17 2-dimensionaly chrys-

tallographic groups, also known as “wallpaper” groups. The isometries of those groups could then be applied



Figure 2: A locally random circle fractal with global p4 symmetry.

to copy that region to create a theoretically infinite pattern with those global symmetries, but was locally

random [2]. Figure 2 shows such a random pattern of circles with p4 symmetry.

In the next section we explain how the algorithm works. Then we present a selection of different pat-

terns that demonstrates the flexibility of the algorithm. In the next section we show some fractal wallpaper

patterns. Finally, we conclude and indicate directions of future work.

2 The Algorithm

The idea of the algorithm (below) is to randomly place progressively smaller motifs mi within a region R so

that they do not overlap any previously placed motif [1]. Random positions are tried until a non-overlapping

one is found. As noted in [1] for many choices of R and motifs mi of area Ai, the following algorithm

proceeds without halting:

For each i = 0, 1, 2, . . .

Repeat:

Randomly choose a point within R to place the i-th motif mi.

Until (mi doesn’t intersect any of m0,m1, ...,mi−1)

Add mi to the list of successful placements

Until some stopping condition is met, such as a maximum value of i or a minimum value of Ai.

It has been found experimentally by the second author that this non-halting phenomenon occurs over a wide

range of choices of shapes of R and the motifs if the motifs obeyed an inverse power law area rule: if A is

the area of R, then for i = 0, 1, 2, . . . the area of mi, Ai, can be taken to be:

Ai =
A

ζ(c,N)(N + i)c
(1)

where c > 1 and N > 1 are parameters, and ζ(c,N) is the Hurwitz zeta function: ζ(s, q) =
∑

∞

k=0
1

(q+k)s .

Thus limn→∞

∑n
i=0 Ai = A, that is, the process is space-filling if the algorithm continues indefinitely. In

the limit, the fractal dimension D of the placed motifs can be computed to be D = 2/c [5].



It is conjectured by the authors that the algorithm does not halt for reasonable shapes of R and mi, and

reasonable choices of c and N (depending on the shapes of R and the mis). For this non-halting behavior,

we need N ≥ 1 and 1 < c < cmax where cmax is usually less than 1.5. In fact this has been proved for

1 < c < 1.0965... and N ≥ 1 by Christopher Ennis when R is a circle and the motifs are also circles [3].

3 Sample Patterns

There are many choices for an artist to make when using the algorithm to create fractal patterns: (1) the

parameters c and N , (2) the shapes of R and the motifs, (3) the percentage of fill (or the number of copies

of the motif), (4) the scheme for filling copies of the motif — a pattern or different colors, and (5) the

orientations for copies of the motif. As a first example, Figure 3 shows a pattern of butterflies, that is

butterfly motif outliines that are filled with monarch butterfly interior decorations.

Figure 3: A butterfly pattern with 100 butterflies, c=1.26, N=1.5, and 70% fill.

We note that neither the region nor the motif needs to be simply connected or even connected. Figure

4 shows a pattern of Dali-esque non-simply-connected “eyes” that can be filled with other eyes. Figure 5

shows a pattern of 60◦–120◦ rhombi of three orientations which are separated by 120◦, rhombi with three

colors corresponding to their orientations.

Figure 4: A pattern with “hollow” eye motifs, with

150 eyes, c=1.20, N=3, and 56% fill.

Figure 5: A pattern of three rhombi, 250 of each

orientation, with c=1.52, N=8, and 91% fill.



The algorithm cycles through the three orientations. A plane tessellation by equal-sized rhombi oriented

this way gives rise to the 3D Necker Cube optical illusion, which is also evident here. With this color

scheme, the pattern is reminiscent of picturesque Mediterranean villages with tile roofs.

The algorithm also works for sequences of motifs — the motifs need not be the same shape as long

as their areas obey the area rule. Figure 6 uses the digits 0, 1, . . . , 9 as motifs, each digit receiving its

own color. Again the algorithm cycles through the digits. We note that the algorithm also works for infinite

sequences of “motifs”, though we don’t show an example. Figure 7 shows a pattern of peppers using random

orientations, and random coloring independently of orientation, but but only within the gamut of the colors

of hot peppers: green to yellow to orange to red.

Figure 6: A sequence of 600 digit motifs 0-9, with

c=1.19, N=2, and 68% fill.

Figure 7: 1200 Randomly oriented peppers with

c=1.26, N=3, 80% fill.

One can observe that some of the peppers overlap the edges of the square region. In fact each one of

those peppers is continued across the opposite edge: there is an orange pepper on the right edge that is

continued from the left edge. There are also peppers that are continued from top to bottom. Thus this region

can serve as the fudamental region for the simplest wallpaper group, p1. We discuss such fractal patterns

with wallpaper symmetry in the next section.

4 Fractal Wallpaper Patterns

In this section we discuss “wallpaper” patterns, and fractal wallpaper patterns in particular. It has been

known for over a century that there 17 different kinds of patterns that repeat in two independent direc-

tions in the Euclidean plane. Such patterns have been called wallpaper patterns and their symmetry groups

are called plane crystallographic groups or wallpaper groups. In 1952 the International Union of Crystal-

lography (IUC) established a notation for these groups, and a shorthand notation soon followed. In 1978

Schattschneider wrote a paper clarifying the notation and giving an algorithm for identifying the symmetry

group of a wallpaper pattern [4].

As mentioned in the Introduction, we can create fractal wallpaper patterns by first filling a fundamental

region for one of the wallpaper groups with a fractal pattern, and then extending that pattern (theoretically

to the entire plane) by applying isometries from that wallpaper group. The process of filliing a fundamental

region is different for each group, and thus requires a separate modification of the algorithm. Figure 7 shows



a pattern of circles with p1 symmetry, the simplest kind of wallpaper symmetry; there are four copies of the

square fundamental region.

Figure 8: A circle pattern with p1 symmetry.

Four of the wallpaper groups have fundamental regions that are bounded by mirror (or reflection) lines.

An issue that arises for these groups is what to do when a trial placement of the motif crosses a mirror bound-

ary of the fundamental region. There are several options. The simplest option is simply to let that happen,

but this leads to non-aesthic patterns with blobs of partial motifs combined on those mirrors. Another option

is to simply reject such placements. This was done in the pattern of hearts (with p2mm symmetry) in Figure

8 and the pattern of triangles (with p4mm symmetry) in Figure 9.

Figure 9: A random heart pattern with p2mm symmetry.

Another option we devised works for motifs with at least bilateral symmetry. In this case if one of the

axes of bilateral symmetry aligns with the mirror boundary, we center the motif on that mirror axis. This

has been done in Figure 10, which shows a pattern of flowers with p6mm symmetry.



Figure 10: A pattern of black and white triangles with global p4mm symmetry.

Figure 11: A flower pattern with p6mm symmetry with some flowers on mirror lines.

We have also created fractal patterns with p4 and p6 symmetry. Figure 2 showed a fractal pattern of

circles with p4 symmetry. Figure 12 shows a circle pattern with p6 symmetry. These symmetry groups have

rotation centers: p4 has 2-fold and 4-fold centers, and p6 has 2-fold, 3-fold, and 6-fold centerss. As with the

case of mirror boundaries for fundamental regions, the issue arises as to what to do when a trial placement

of a motif overlaps a rotation point. Again, we could let that happen, resulting in unaesthetic blobs of

overlapping motifs, or we could avoid the rotation points. But, as with the case of mirrors, we obtain an

aesthetic solution by centering the motif on the rotation point if motif has such rotational symmetry. In the

examples below we use circles as motifs, since they have any desired rotational symmetry.

5 Conclusion and Future Work

We have presented a very general method for creating aesthetic fractal patterns. We have extended this

method to generate patterns with global wallpaper symmetry but which are locally fractal in nature. We have

done this for some of the wallpaper groups, but our eventual goal is to be able to create locally fractal patterns

for all 17 wallpaper groups. It would also be interesting to create corresponding spherical or hyperbolic

patterns that are locally random, but have global symmetries.



Figure 12: A circle pattern with p6 symmetry.
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